2.E: Basic Concepts of Sets (Exercises) (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    4911
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\): Set Operations

    Let \(A = \{1, 5, 31, 56, 101\}\), \(B = \{22, 56, 5, 103, 87\}\), \(C = 41, 13, 7, 101, 48\}\), and \(D = \{1, 3, 5, 7...\}\)

    Give the sets resulting from:

    1. \(A \cap B\)
    2. \(C \cup A\)
    3. \(C \cap D\)
    4. \((A \cup B) \cup (C \cup D)\)
    Answer

    1. \(A \cap B =\{ 5, 56 \}\)

    2. \(C \cup A=\{1, 5, 7, 13, 31, 41, 48, 56, 101\} \)

    3. \(C \cap D = \{ 7, 13, 41, 101\} \)

    4. \((A \cup B) \cup (C \cup D)\)

    Exercise \(\PageIndex{2}\): True or False
    1. \(7 \in \{6, 7, 8, 9\}\)
    2. \(5 \notin \{6, 7, 8, 9\}\)
    3. \(\{2\} \nsubseteq \{1, 2\}\)
    4. \(\emptyset \nsubseteq \{\alpha, \beta, x\}\)
    5. \(\emptyset = \{\emptyset\}\)
    Answer

    \( T, T, F, F, F\)

    Exercise \(\PageIndex{3}\): Subsets

    List all the subsets of:

    1. \(\{1, 2, 3\}\)
    2. \(\{\phi, \lambda, \Delta, \mu\}\)
    3. \(\{\emptyset\}\)
    Answer

    1. \(\{\{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{ 2, 3\}, \{1\}, \{2\}, \{ 3\}, \emptyset \}\)

    3. \(\{\{\emptyset\},\emptyset \}\)

    Exercise \(\PageIndex{4}\): Venn Diagram

    A survey of 100 university students found the following data on their food preferences:

    • 54 preferred Italian cuisine
    • 29 preferred Asian-style cooking
    • 16 preferred both Italian and Asian-style foods
    • 19 preferred both Asian-style and Indian dishes
    • 10 preferred both Italian and Indian cuisines
    • 5 liked them all
    • 11 did not like any of the options

    How many students preferred:

    1. Only Indian food?
    2. Only Italian food?
    3. Only one food?
    Exercise \(\PageIndex{5}\): Symbols

    Assume that the universal set is the set of all integers.
    Let
    \(A=\{-7,-5,-3,-1,1,3,5,7\} \)
    \(B =\{ x \in {\bf Z}| x^2 <9 \} \)
    \(C= \{2,3,4,5,6\}\)
    \(D=\{x \in {\bf Z}| x \leq 9 \}\)

    In each of the following fill in the blank with most appropriate symbol from \(\in, \notin, \subset, =,\neq,\subseteq\), so that resulting statement is true.

    A-----D
    3-----B
    9-----D

    {2}-----\(C^c\)
    \(\emptyset\)-----D
    A-----C
    B-----C
    C-----D
    0-----\(A \cap D\)
    0-----\(A \cup D\)

    Exercise \(\PageIndex{6}\): Prove or disprove

    Given subsets \(A,B,C\) of a universal set \(U\), prove the statements that are true and give counter examples to disprove those that are false.

    1. \( A-(B \cap C)=(A-B) \cup(A-C).\)
    2. If \( A \cap B= A \cap C\) then \(B= C\).
    3. If \( A \cup B= A \cup C\) then \(B= C\).
    4. \( A-(B - C)=(A-B)-C.\)
    5. If \(A \times B \subseteq C \times D\) then \(A\subseteq C\) and \( B \subseteq D.\)
    6. If \(A\subseteq C\) and \( B \subseteq D\) then \(A \times B \subseteq C \times D.\)
    Exercise \(\PageIndex{7}\): Set operations

    Let \(A = \{ r,e,a,s,o,n,i,g\}, B = \{m,a,t,h,e,t,i,c,l\} \) and \( C \) = the set of vowels. Calculate:

    1. \(A \cup B \cup C.\)
    2. \(A \cap B.\)
    3. \({C}^c\).
    Exercise \(\PageIndex{8}\): Prove or disprove

    Given subsets \(A,B,C\) of a universal set \(U\), prove the statements that are true and give counter examples to disprove those that are false.

    1. \(P(A \cup B) = P(A) \cup P(B).\)
    2. \(P(A \cap B) = P(A) \cap P(B).\)
    3. \(P(A^c)=(P(A))^c\)
    4. \(P(A - B) = P(A) - P(B).\)
    Exercise \(\PageIndex{9}\): Equal Sets

    Consider the following sets:

    \(A=\{x \in \mathbb{Z}| x= 2m, m \in \mathbb{Z}\} \) and \(B=\{x \in \mathbb{Z}| x= 2(n-1), n \in \mathbb{Z}\} \).

    Are \(A\) and \(B\) equal? Justify your answer.

    Exercise \(\PageIndex{10}\): Product of Sets

    Let \(A=\{1,3,5\} \), and
    \(B =\{ a,b \} \).

    Then

    1. Find \( A \times B\) and \(B \times A\).
    2. Are \(A \times B\) and \(B \times A\) equal? Justify your answer.
    2.E: Basic Concepts of Sets (Exercises) (2024)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Horacio Brakus JD

    Last Updated:

    Views: 5327

    Rating: 4 / 5 (51 voted)

    Reviews: 82% of readers found this page helpful

    Author information

    Name: Horacio Brakus JD

    Birthday: 1999-08-21

    Address: Apt. 524 43384 Minnie Prairie, South Edda, MA 62804

    Phone: +5931039998219

    Job: Sales Strategist

    Hobby: Sculling, Kitesurfing, Orienteering, Painting, Computer programming, Creative writing, Scuba diving

    Introduction: My name is Horacio Brakus JD, I am a lively, splendid, jolly, vivacious, vast, cheerful, agreeable person who loves writing and wants to share my knowledge and understanding with you.